Commit 206b1ee2 by Florian Perlié-Long Committed by Alexandre Duret-Lutz

### * doc/tl/tl.tex: Typos

parent 0d26b5d2
 ... ... @@ -1481,8 +1481,8 @@ operator's arguments. For instance $\F\G(a)\AND \G(b) \AND \F\G(c) \AND The following more complicated rules are generalizations of$f\AND \X\G f\equiv \G f$and$f\OR \X\F f\equiv \F f: \begin{align*} f\AND \X(\G(f\AND g\ldots)\AND h\ldots) &\equiv \G(f) \AND \X(\G(g\ldots)\AND h\ldots) \\ f\OR \X(\F(f)\OR h\ldots) &\equiv \F(f) \OR \X(h\ldots) f\AND \X(\G(f\AND g\AND \ldots)\AND h\AND \ldots) &\equiv \G(f) \AND \X(\G(g\AND \ldots)\AND h\AND \ldots) \\ f\OR \X(\F(f)\OR h\OR \ldots) &\equiv \F(f) \OR \X(h\OR \ldots) \end{align*} The latter rule forf\OR \X(\F(f)\OR h\ldots)$is only applied if all$\F$-formulas can be removed from the argument of$\X$with the ... ... @@ -1685,9 +1685,9 @@$q,\,q_i\$ & a pure eventuality that is also purely universal \\ \begin{align*} \G(f_1\AND\ldots\AND f_n \AND \X e_1 \AND \ldots \AND \X e_p)&\equiv \G(f_1\AND\ldots\AND f_n \AND e_1 \AND \ldots \AND e_p) \\ \G(f_1\AND\ldots\AND f_n \AND \F (g_1 \AND \ldots \AND g_p \AND \X e_1 \AND \X e_m))&\equiv \G(f_1\AND\ldots\AND f_n \AND \F(g_1 \AND \ldots \AND g_p) \AND e_1 \AND \ldots \AND e_m) \\ \F(f_1\OR\ldots\OR f_n \OR \X u_1 \OR \ldots \OR \X u_p)&\equiv \F(f_1\OR\ldots\OR f_n \OR u_1 \OR \ldots \AND u_p) \\ \F(f_1\OR\ldots\OR f_n \OR \G (g_1 \OR \ldots \OR g_p \OR \X u_1 \OR \X u_m))&\equiv \F(f_1\OR\ldots\AND f_n \OR \G(g_1 \OR \ldots \OR g_p) \OR u_1 \OR \ldots \OR u_m) \\ \G(f_1\AND\ldots\AND f_n \AND \F (g_1 \AND \ldots \AND g_p \AND \X e_1 \AND \ldots \AND \X e_m))&\equiv \G(f_1\AND\ldots\AND f_n \AND \F(g_1 \AND \ldots \AND g_p) \AND e_1 \AND \ldots \AND e_m) \\ \F(f_1\OR\ldots\OR f_n \OR \X u_1 \OR \ldots \OR \X u_p)&\equiv \F(f_1\OR\ldots\OR f_n \OR u_1 \OR \ldots \OR u_p) \\ \F(f_1\OR\ldots\OR f_n \OR \G (g_1 \OR \ldots \OR g_p \OR \X u_1 \OR \ldots \OR \X u_m))&\equiv \F(f_1\OR\ldots\AND f_n \OR \G(g_1 \OR \ldots \OR g_p) \OR u_1 \OR \ldots \OR u_m) \\ \G(f_1\OR\ldots\OR f_n \OR q_1 \OR \ldots \OR q_p)&\equiv \G(f_1\OR\ldots\OR f_n)\OR q_1 \OR \ldots \OR q_p \\ \F(f_1\AND\ldots\AND f_n \AND q_1 \AND \ldots \AND q_p)&\equivEU \F(f_1\AND\ldots\AND f_n)\AND q_1 \AND \ldots \AND q_p \\ \G(f_1\AND\ldots\AND f_n \AND q_1 \AND \ldots \AND q_p)&\equivEU \G(f_1\AND\ldots\AND f_n)\AND q_1 \AND \ldots \AND q_p \\ ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!