Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Spot
Spot
Commits
5eae815a
Commit
5eae815a
authored
Apr 28, 2012
by
Alexandre Duret-Lutz
Browse files
Document recognized utf8 characters.
* doc/tl/tl.tex: Here.
parent
7e4787da
Changes
1
Hide whitespace changes
Inline
Side-by-side
doc/tl/tl.tex
View file @
5eae815a
...
...
@@ -11,6 +11,8 @@
\usepackage
{
xspace
}
\usepackage
{
dsfont
}
\usepackage
{
mathabx
}
% vDash
\usepackage
{
wasysym
}
\usepackage
{
stmaryrd
}
\usepackage
{
showlabels
}
\usepackage
{
tabulary
}
\usepackage
[numbers]
{
natbib
}
...
...
@@ -36,6 +38,8 @@
\newcommand
{
\spottodo
}
[2][]
{
\stodo
[color=green!40,caption={#2},#1]
{
#2
}}
\newcommand
{
\ltltodo
}
[2][]
{
\stodo
[color=red!40,caption={#2},#1]
{
#2
}}
\newcommand
{
\uni
}
[1]
{
\texttt
{
\small
U+#1
}}
%% ---------------------- %%
%% Mathematical symbols. %%
...
...
@@ -359,16 +363,16 @@ Two temporal formul\ae{} $f$ and $g$ can be combined using the
following Boolean operators:
\begin{center}
\begin{tabular}
{
ccccc
}
&
preferred
&
\multicolumn
{
2
}{
c
}{
other supported
}
\\
operation
&
syntax
&
\multicolumn
{
2
}{
c
}{
syntaxes
}
\\
\midrule
negation
&
$
\NOT
f
$
&
$
\NOTALT
f
$
\\
disjunction
&
$
f
\OR
g
$
&
$
f
\ORALT
g
$
&
$
f
\ORALTT
g
$
&
$
f
\ORALTTT
g
$
\\
conjunction
&
$
f
\AND
g
$
&
$
f
\ANDALT
g
$
&
$
f
\ANDALTT
g
$
\\
implication
&
$
f
\IMPLIES
g
$
&
$
f
\IMPLIESALT
g
$
&
$
f
\IMPLIESALTT
g
$
\\
exclusion
&
$
f
\XOR
g
$
&
$
f
\XORALT
g
$
\\
equivalence
&
$
f
\EQUIV
g
$
&
$
f
\EQUIVALT
g
$
&
$
f
\EQUIVALTT
g
$
\\
\begin{tabular}
{
ccccc
rl
}
&
preferred
&
\multicolumn
{
2
}{
c
}{
other supported
}
&&
\multicolumn
{
2
}{
l
}{
UTF8 characters supported
}
\\
operation
&
syntax
&
\multicolumn
{
2
}{
c
}{
syntaxes
}
&&
preferred
&
others
\\
\
c
midrule
(r)
{
1-5
}
\cmidrule
(l)
{
6-7
}
negation
&
$
\NOT
f
$
&
$
\NOTALT
f
$
&
&
&
$
\lnot
$
\uni
{
00AC
}
\\
disjunction
&
$
f
\OR
g
$
&
$
f
\ORALT
g
$
&
$
f
\ORALTT
g
$
&
$
f
\ORALTTT
g
$
&
$
\lor
$
\uni
{
2228
}
&
$
\cup
$
\uni
{
222A
}
\\
conjunction
&
$
f
\AND
g
$
&
$
f
\ANDALT
g
$
&
$
f
\ANDALTT
g
$
&
&
$
\land
$
\uni
{
2227
}
&
$
\cap
$
\uni
{
2229
}
\\
implication
&
$
f
\IMPLIES
g
$
&
$
f
\IMPLIESALT
g
$
&
$
f
\IMPLIESALTT
g
$
&
&
$
\limplies
$
\uni
{
2192
}
&
$
\rightarrow
$
\uni
{
27F6
}
,
$
\Rightarrow
$
\uni
{
21D2
}
\uni
{
27F9
}
\\
exclusion
&
$
f
\XOR
g
$
&
$
f
\XORALT
g
$
&
&
&
$
\oplus
$
\uni
{
2295
}
\\
equivalence
&
$
f
\EQUIV
g
$
&
$
f
\EQUIVALT
g
$
&
$
f
\EQUIVALTT
g
$
&
&
$
\liff
$
\uni
{
2194
}
&
$
\Leftrightarrow
$
\uni
{
21D4
}
\\
\end{tabular}
\end{center}
...
...
@@ -455,19 +459,19 @@ following rewritings:
f
\XOR
g
&
\equiv
(f
\AND\NOT
g)
\OR
(g
\AND\NOT
f)
\\
\end{align*}
\section
{
Temporal Operators
}
\section
{
Temporal Operators
}
\label
{
sec:ltlops
}
Given two temporal formul
\ae
{}
$
f
$
, and
$
g
$
, the following
temporal operators can be used to construct another temporal formula.
\begin{center}
\begin{tabular}
{
ccc
}
&
preferred
&
\multicolumn
{
1
}{
c
}{
other supported
}
\\
operator
&
syntax
&
\multicolumn
{
1
}{
c
}{
syntaxes
}
\\
\midrule
Next
&
$
\X
f
$
&
$
\XALT
f
$
\\
Eventually
&
$
\F
f
$
&
$
\FALT
f
$
\\
Always
&
$
\G
f
$
&
$
\GALT
f
$
\\
\begin{tabular}
{
ccc
rl
}
&
preferred
&
\multicolumn
{
1
}{
c
}{
other supported
}
&
\multicolumn
{
2
}{
l
}{
UTF8 characters supported
}
\\
operator
&
syntax
&
\multicolumn
{
1
}{
c
}{
syntaxes
}
&
preferred
&
others
\\
\
c
midrule
(r)
{
1-3
}
\cmidrule
(l)
{
4-5
}
Next
&
$
\X
f
$
&
$
\XALT
f
$
&
$
\Circle
$
\uni
{
25CB
}
&
$
\Circle
$
\uni
{
25EF
}
\\
Eventually
&
$
\F
f
$
&
$
\FALT
f
$
&
$
\Diamond
$
\uni
{
25C7
}
&
$
\Diamond
$
\uni
{
22C4
}
\uni
{
2662
}
\\
Always
&
$
\G
f
$
&
$
\GALT
f
$
&
$
\Square
$
\uni
{
25A1
}
&
$
\Square
$
\uni
{
2B1C
}
\uni
{
25FB
}
\\
(Strong) Until
&
$
f
\U
g
$
\\
Weak Until
&
$
f
\W
g
$
\\
(Weak) Release
&
$
f
\R
g
$
&
$
f
\RALT
g
$
\\
...
...
@@ -562,27 +566,29 @@ be further combined with the following operators, where $f$ and $g$
denote arbitrary SERE and
$
b
$
denotes a Boolean formula.
\begin{center}
\begin{tabular}
{
ccccc
}
&
preferred
&
\multicolumn
{
2
}{
c
}{
other supported
}
\\
operation
&
syntax
&
\multicolumn
{
2
}{
c
}{
syntaxes
}
\\
\midrule
\begin{tabular}
{
ccccc
rl
}
&
preferred
&
\multicolumn
{
2
}{
c
}{
other supported
}
&&
\multicolumn
{
2
}{
l
}{
UTF8 characters supported
}
\\
operation
&
syntax
&
\multicolumn
{
2
}{
c
}{
syntaxes
}
&&
preferred
&
others
\\
\
c
midrule
(r)
{
1-5
}
\cmidrule
(l)
{
6-7
}
empty word
&
$
\eword
$
\\
union
&
$
f
\OR
g
$
&
$
f
\ORALT
g
$
&
$
f
\ORALTT
g
$
&
$
f
\ORALTTT
g
$
\\
(synchronized)
intersection
&
$
f
\ANDALT
g
$
&
$
f
\ANDALTT
g
$
\\
unsynchronized intersection
&
$
f
\AND
g
$
\\
union
&
$
f
\OR
g
$
&
$
f
\ORALT
g
$
&
$
f
\ORALTT
g
$
&
$
f
\ORALTTT
g
$
&&
$
\lor
$
\uni
{
2228
}
$
\cup
$
\uni
{
222A
}
\\
intersection
&
$
f
\ANDALT
g
$
&
$
f
\ANDALTT
g
$
&&&
$
\cap
$
\uni
{
2229
}
&
$
\land
$
\uni
{
2227
}
\\
NLM intersection
\footnotemark
&
$
f
\AND
g
$
\\
concatenation
&
$
f
\CONCAT
g
$
\\
fusion
&
$
f
\FUSION
g
$
\\
bounded repetition
&
$
f
\STAR
{
\mvar
{
i
}
..
\mvar
{
j
}}$
&
$
f
\STAR
{
\mvar
{
i
}
:
\mvar
{
j
}}$
&
$
f
\STAR
{
\mvar
{
i
}
to
\mvar
{
j
}}$
&
$
f
\STAR
{
\mvar
{
i
}
,
\mvar
{
j
}}$
\\
unbounded repetition
&
$
f
\STAR
{
\mvar
{
i
}
..
}$
\llap
{
un
}
bounded repetition
&
$
f
\STAR
{
\mvar
{
i
}
..
}$
&
$
f
\STAR
{
\mvar
{
i
}
:
}$
&
$
f
\STAR
{
\mvar
{
i
}
to
}$
&
$
f
\STAR
{
\mvar
{
i
}
,
}$
\\
\end{tabular}
\end{center}
\footnotetext
{
\emph
{
Non-Length-Matching
}
interesction.
}
The character
\samp
{
\$
}
or the string
\samp
{
inf
}
can also be used as
value for
$
\mvar
{
j
}$
in the above operators to denote an unbounded
range.
\footnote
{
SVA uses
\samp
{
\$
}
while PSL uses
\samp
{
inf
}
.
}
For
...
...
@@ -772,6 +778,14 @@ For technical reasons, the negated weak closure is actually implemented as
an operator, even if it is syntactically and semantically equal to the
combination of
$
\NOT
$
and
$
\sere
{
r
}$
.
UTF-8 input may combine one box or diamond character from
section~
\ref
{
sec:ltlops
}
with one arrow character from
section~
\ref
{
sec:boolops
}
to replace the operators
$
\Asuffix
$
,
$
\Esuffix
$
, as well as the operators
$
\AsuffixEQ
$
and
$
\EsuffixEQ
$
that will be defined in
\ref
{
sec:pslsugar
}
. Additionally,
$
\AsuffixALT
$
may be replaced by
$
\mapsto
$
\uni
{
21A6
}
, and
$
\AsuffixALTEQ
$
by
$
\Mapsto
$
\uni
{
2907
}
.
\subsection
{
Semantics
}
The following semantics assume that
$
r
$
is a SERE,
...
...
@@ -792,7 +806,7 @@ is a model of $r$. An infinite sequence $\texttt{a;a;a;a;a;}\ldots$
is therefore a model of the formula
\samp
{$
\sere
{
a
\PLUS
{}
;
\NOT
a
}$}
even though it never sees
\samp
{$
\NOT
a
$}
.
\subsection
{
Syntactic Sugar
}
\subsection
{
Syntactic Sugar
}
\label
{
sec:pslsugar
}
The syntax on the left is equivalent to the syntax on the right.
These rewritings are performed from left to right when parsing a
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment