// Copyright (C) 2012, 2013 Laboratoire de Recherche et Développement
// de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include "degen.hh"
#include "tgba/tgbaexplicit.hh"
#include "misc/hash.hh"
#include "misc/hashfunc.hh"
#include "ltlast/constant.hh"
#include
#include
#include "tgbaalgos/scc.hh"
#include "tgba/bddprint.hh"
//#define DEGEN_DEBUG
namespace spot
{
namespace
{
// A state in the degenalized automaton corresponds to a state in
// the TGBA associated to a level. The level is just an index in
// the list of acceptance sets.
typedef std::pair degen_state;
struct degen_state_hash
{
size_t
operator()(const degen_state& s) const
{
return s.first->hash() & wang32_hash(s.second);
}
};
struct degen_state_equal
{
bool
operator()(const degen_state& left,
const degen_state& right) const
{
if (left.second != right.second)
return false;
return left.first->compare(right.first) == 0;
}
};
// Associate the degeneralized state to its number.
typedef Sgi::hash_map ds2num_map;
// Queue of state to be processed.
typedef std::deque queue_t;
// Memory management for the input states.
class unicity_table
{
typedef Sgi::hash_set uniq_set;
uniq_set m;
public:
const state* operator()(const state* s)
{
uniq_set::const_iterator i = m.find(s);
if (i == m.end())
{
m.insert(s);
return s;
}
else
{
s->destroy();
return *i;
}
}
~unicity_table()
{
for (uniq_set::iterator i = m.begin(); i != m.end();)
{
// Advance the iterator before destroying its key. This
// avoid issues with old g++ implementations.
uniq_set::iterator old = i++;
(*old)->destroy();
}
}
size_t
size()
{
return m.size();
}
};
// Acceptance set common to all outgoing transitions of some state.
class outgoing_acc
{
const tgba* a_;
typedef std::pair cache_entry;
typedef Sgi::hash_map cache_t;
cache_t cache_;
public:
outgoing_acc(const tgba* a): a_(a)
{
}
cache_t::const_iterator fill_cache(const state* s)
{
bdd common = a_->all_acceptance_conditions();
bdd union_ = bddfalse;
tgba_succ_iterator* it = a_->succ_iter(s);
for (it->first(); !it->done(); it->next())
{
bdd set = it->current_acceptance_conditions();
common &= set;
union_ |= set;
}
delete it;
cache_entry e(common, union_);
return cache_.insert(std::make_pair(s, e)).first;
}
// Intersection of all outgoing acceptance sets
bdd common_acc(const state* s)
{
cache_t::const_iterator i = cache_.find(s);
if (i == cache_.end())
i = fill_cache(s);
return i->second.first;
}
// Union of all outgoing acceptance sets
bdd union_acc(const state* s)
{
cache_t::const_iterator i = cache_.find(s);
if (i == cache_.end())
i = fill_cache(s);
return i->second.second;
}
};
// Order of accepting sets (for one SCC)
class acc_order
{
std::vector order_;
bdd found_;
public:
unsigned
next_level(bdd all, int slevel, bdd acc)
{
bdd temp = acc;
if (all != found_)
{
// Check for new conditions in acc
if ((acc & found_) != acc)
{
bdd acc_t = acc;
while (acc_t != bddfalse)
{
bdd next = bdd_satone(acc_t);
acc_t -= next;
// Add new condition
if ((next & found_) != next)
{
order_.push_back(next);
found_ |= next;
}
}
}
}
acc = temp;
unsigned next = slevel;
while (next < order_.size()
&& (acc & order_[next]) == order_[next])
++next;
return next;
}
void
print(int scc, const bdd_dict* dict)
{
std::vector::iterator i;
std::cout << "Order_" << scc << ":\t";
for (i = order_.begin(); i != order_.end(); i++)
{
bdd_print_acc(std::cout, dict, *i);
std::cout << ", ";
}
std::cout << std::endl;
}
};
// Accepting order for each SCC
class scc_orders
{
bdd all_;
std::map orders_;
public:
scc_orders(bdd all): all_(all)
{
}
unsigned
next_level(int scc, int slevel, bdd acc)
{
return orders_[scc].next_level(all_, slevel, acc);
}
void
print(const bdd_dict* dict)
{
std::map::iterator i;
for (i = orders_.begin(); i != orders_.end(); i++)
i->second.print(i->first, dict);
}
};
}
sba*
degeneralize(const tgba* a, bool use_z_lvl, bool use_cust_acc_orders,
bool use_lvl_cache)
{
bool use_scc = use_lvl_cache || use_cust_acc_orders || use_z_lvl;
bdd_dict* dict = a->get_dict();
// The result (degeneralized) automaton uses numbered state.
sba_explicit_number* res = new sba_explicit_number(dict);
dict->register_all_variables_of(a, res);
// FIXME: unregister acceptance conditions.
// Invent a new acceptance set for the degeneralized automaton.
int accvar =
dict->register_acceptance_variable(ltl::constant::true_instance(), res);
bdd degen_acc = bdd_ithvar(accvar);
res->set_acceptance_conditions(degen_acc);
// Create an order of acceptance conditions. Each entry in this
// vector correspond to an acceptance set. Each index can
// be used as a level in degen_state to indicate the next expected
// acceptance set. Level order.size() is a special level used to
// denote accepting states.
std::vector order;
{
// The order is arbitrary, but it turns out that using push_back
// instead of push_front often gives better results because
// acceptance sets at the beginning if the cycle are more often
// used in the automaton. (This surprising fact is probably
// related to the order in which we declare the BDD variables
// during the translation.)
bdd all = a->all_acceptance_conditions();
while (all != bddfalse)
{
bdd next = bdd_satone(all);
all -= next;
order.push_back(next);
}
}
// Initialize scc_orders
scc_orders orders(a->all_acceptance_conditions());
outgoing_acc outgoing(a);
// Make sure we always use the same pointer for identical states
// from the input automaton.
unicity_table uniq;
// These maps make it possible to convert degen_state to number
// and vice-versa.
ds2num_map ds2num;
// This map is used to find transitions that go to the same
// destination with the same acceptance. The integer key is
// (dest*2+acc) where dest is the destination state number, and
// acc is 1 iff the transition is accepting. The source
// is always that of the current iteration.
typedef std::map tr_cache_t;
tr_cache_t tr_cache;
// State level cache
typedef std::map lvl_cache_t;
lvl_cache_t lvl_cache;
// Compute SCCs in order to use any optimization.
scc_map m(a);
if (use_cust_acc_orders || use_lvl_cache || use_z_lvl)
m.build_map();
queue_t todo;
const state* s0 = uniq(a->get_init_state());
degen_state s(s0, 0);
// As an heuristic, if the initial state has accepting self-loops,
// start the degeneralization on the accepting level.
{
bdd all = a->all_acceptance_conditions();
tgba_succ_iterator* it = a->succ_iter(s0);
for (it->first(); !it->done(); it->next())
{
// Look only for transitions that are accepting.
if (all != it->current_acceptance_conditions())
continue;
// Look only for self-loops.
const state* dest = uniq(it->current_state());
if (dest == s0)
{
// The initial state has an accepting self-loop.
s.second = order.size();
break;
}
}
delete it;
}
#ifdef DEGEN_DEBUG
std::mapnames;
names[s.first] = 1;
ds2num[s] =
10000 * names[s.first] + 100 * s.second + m.scc_of_state(s.first);
#else
ds2num[s] = 0;
#endif
todo.push_back(s);
// If use_lvl_cache is on insert initial state to level cache
// Level cache stores first encountered level for each state.
// When entering an SCC first the lvl_cache is checked.
// If such state exists level from chache is used.
// If not, a new level (starting with 0) is computed.
if (use_lvl_cache)
lvl_cache[s.first] = s.second;
while (!todo.empty())
{
s = todo.front();
todo.pop_front();
int src = ds2num[s];
unsigned slevel = s.second;
// If we have a state on the last level, it should be accepting.
bool is_acc = slevel == order.size();
// On the accepting level, start again from level 0.
if (is_acc)
slevel = 0;
// Check SCC for state s
int s_scc = -1;
if (use_scc)
s_scc = m.scc_of_state(s.first);
tgba_succ_iterator* i = a->succ_iter(s.first);
for (i->first(); !i->done(); i->next())
{
degen_state d(uniq(i->current_state()), 0);
#ifdef DEGEN_DEBUG
if (names.find(d.first) == names.end())
names[d.first] = uniq.size();
#endif
// Check whether the target's SCC is accepting
bool is_scc_acc = false;
int scc = use_scc ? m.scc_of_state(i->current_state()) : -1;
if (!use_scc || m.accepting(scc))
is_scc_acc = true;
// The old level is slevel. What should be the new one?
bdd acc = i->current_acceptance_conditions();
bdd otheracc = outgoing.common_acc(d.first);
if (is_acc)
{
// Ignore the last expected acceptance set (the value of
// *prev below) if it is common to all other outgoing
// transitions (of the current state) AND if it is not
// used by any outgoing transition of the destination
// state.
//
// 1) It's correct to do that, because this acceptance
// set is common to other outgoing transitions.
// Therefore if we make a cycle to this state we
// will eventually see that acceptance set thanks
// to the "pulling" of the common acceptance sets
// of the destination state (d.first).
//
// 2) It's also desirable because it makes the
// degeneralization idempotent (up to a renaming of
// states). Consider the following automaton where
// 1 is initial and => marks accepting transitions:
// 1=>1, 1=>2, 2->2, 2->1 This is already an SBA,
// with 1 as accepting state. However if you try
// degeralize it without ignoring *prev, you'll get
// two copies of states 2, depending on whether we
// reach it using 1=>2 or from 2->2. If this
// example was not clear, uncomment the following
// "if" block, and play with the "degenid.test"
// test case.
//
// 3) Ignoring all common acceptance sets would also
// be correct, but it would make the
// degeneralization produce larger automata in some
// cases. The current condition to ignore only one
// acceptance set if is this not used by the next
// state is a heuristic that is compatible with
// point 2) above while not causing more states to
// be generated in our benchmark of 188 formulae
// from the literature.
if (!order.empty())
{
unsigned prev = order.size() - 1;
bdd common = outgoing.common_acc(s.first);
if (bdd_implies(order[prev], common))
{
bdd u = outgoing.union_acc(d.first);
if (!bdd_implies(order[prev], u))
acc -= order[prev];
}
}
}
// A transition in the SLEVEL acceptance set should
// be directed to the next acceptance set. If the
// current transition is also in the next acceptance
// set, then go to the one after, etc.
//
// See Denis Oddoux's PhD thesis for a nice
// explanation (in French).
// @PhDThesis{ oddoux.03.phd,
// author = {Denis Oddoux},
// title = {Utilisation des automates alternants pour un
// model-checking efficace des logiques
// temporelles lin{\'e}aires.},
// school = {Universit{\'e}e Paris 7},
// year = {2003},
// address= {Paris, France},
// month = {December}
// }
if (is_scc_acc)
{
acc |= otheracc;
// If use_z_lvl is on, start with level zero 0 when
// swhitching SCCs
unsigned next = (!use_z_lvl || s_scc == scc) ? slevel : 0;
// If lvl_cache is used and switching SCCs, use level from cache
if (use_lvl_cache && s_scc != scc
&& lvl_cache.find(d.first) != lvl_cache.end())
{
d.second = lvl_cache[d.first];
}
else
{
// If using custom acc orders, get next level for this scc
if (use_cust_acc_orders)
d.second = orders.next_level(scc, next, acc);
// Else compute level according the global acc order
else
{
// Consider both the current acceptance sets, and the
// acceptance sets common to the outgoing transitions of
// the destination state.
while (next < order.size()
&& (acc & order[next]) == order[next])
++next;
d.second = next;
}
}
}
// Have we already seen this destination?
int dest;
ds2num_map::const_iterator di = ds2num.find(d);
if (di != ds2num.end())
{
dest = di->second;
}
else
{
#ifdef DEGEN_DEBUG
dest = 10000 * names[d.first] + 100 * d.second + scc;
#else
dest = ds2num.size();
#endif
ds2num[d] = dest;
todo.push_back(d);
// Insert new state to cache
if (use_lvl_cache && lvl_cache.find(d.first) == lvl_cache.end())
lvl_cache[d.first] = d.second;
}
state_explicit_number::transition*& t =
tr_cache[dest * 2 + is_acc];
if (t == 0)
{
// Actually create the transition.
t = res->create_transition(src, dest);
t->condition = i->current_condition();
// If the source state is accepting, we have to put
// degen_acc on all outgoing transitions. (We are still
// building a TGBA; we only assure that it can be used as
// an SBA.)
if (is_acc)
t->acceptance_conditions = degen_acc;
}
else
{
t->condition |= i->current_condition();
}
}
delete i;
tr_cache.clear();
}
#ifdef DEGEN_DEBUG
std::vector::iterator i;
std::cout << "Orig. order: \t";
for (i = order.begin(); i != order.end(); i++)
{
bdd_print_acc(std::cout, dict, *i);
std::cout << ", ";
}
std::cout << std::endl;
orders.print(dict);
#endif
res->merge_transitions();
return res;
}
}